Code: 20EE3503

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2023

ELECTRICAL POWER GENERATION, TRANSMISSION AND DISTRIBUTION

(ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.			
			DL		Marks			
	UNIT-I							
1	a)	Draw a neat schematic diagram of a Hydro	L3	CO2	7 M			
		Electric Plant and explain the functions of						
		various components?						
	b)	With neat sketch explain the function of	L3	CO2	7 M			
		pumped storage plants.						
OR								
2	a)	Draw the line diagram of a thermal power	L3	CO2	7 M			
		station showing various parts.						
	b)	Compare conventional and non-	L3	CO2	7 M			
		conventional sources.						
	l			l				
UNIT-II								
3	a)	Derive the expression for the inductance of	L3	CO3	7 M			
		single phase transmission line.						
	•							

	(b)	Calculate the GMR of a conductor having	L3	CO3	7 M		
		seven strands each of 3mm radius.					
OR							
4	a)	Explain (i)Skin effect,(ii) Proximity effect	L3	CO3	7 M		
	b)	Derive the expression for the inductance of	L3	CO3	7 M		
		a 3-phase line which is completely					
		transposed.					
		UNIT-III					
5	Dis	cuss in detail the nominal-T representation	L3	CO3	14 M		
	wit	h neat circuit diagram and Phasor diagram.					
		OR					
6	a)	Write short note on Ferranti effect.	L3	CO3	7 M		
	b)	Derive the expression for sag when the	L3	CO3	7 M		
		supports are at equal heights.					
		UNIT-IV					
7	a)	Define String Efficiency? Discuss the	L3	CO3	7 M		
		different methods of improving string					
		efficiency?					
	b)	Explain the factors that affect the corona	L3	CO5	7 M		
		loss on an overhead transmission line.					
	<u> </u>	OR					
8	a)	What are the different types of grading of	L3	CO5	7 M		
		cables? Explain each.					
	b)	Derive the expression for Insulation	L3	CO5	7 M		
		resistance of a cable.					
UNIT-V							
9	a)	Compare DC distribution and AC	L4	CO4	7 M		
		distribution systems.					
		1					

	b)	Explain the method of solving A.C	L4	CO4	7 M		
		distribution system when power factor					
		referred to the receiving end voltage with a					
		Phasor diagram.					
	OR						
10	a)	A 2-wire d.c distributor cable AB is 2 km	L4	CO4	7 M		
		long and supplies loads of 100A, 150A,					
		200A and 50A situated at 500m, 1000m,					
		1600m and 2000m from the feeding point					
		A. Each conductor has a resistance of 0.01					
		ohm per 1000 m. Calculate the p.d at each					
		load point if a p.d of 300V is maintained at					
		point A.					
	b)	Derive the expression for total voltage drop	L4	CO4	7 M		
		in a uniformly loaded DC distributor fed at					
		one end.					